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Plan

• Principes de base:
– Définition et propriétés des éruptions solaires
– Champ magnétiques des centres éruptifs et leur modélisation
– Reconnexion magnétique MHD et au-delà

• Résultats principaux: le modèle standard 3D des éruptions
– Formation des régions actives, structuration des centres éruptifs
– Production des émissions électromagnétiques
– Dynamique magnétiques des systèmes éruptifs

• Perspectives/Questions:
– l'énigme du déclenchement des éruptions
– la prédiction des éruptions solaires
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Solar Eruption

Energy of the largest solar eruption < 1027 J 

Rotational energy of the Earth 1029 J ; Energy emitted by the Sun per second ~1026 J 

Yearly radiation received by Earth 1024 J ; World yearly energy consumption 4x1020 JE.Pariat - 16 Mai 2018 – SunStars



Solar eruptions: impulsive events

• Active events are energy storage 
and release phenomena with
– T (E increase) >> T (E decrease) 
– Long-duration energy storage 

• a few hours (jets), days 
(flares) to a few weeks 
(prominence eruptions)

– Sudden energy release : 
• alfvénic timescales ~ a few 

minutes

•  impulsive/eruptive events EUV Bright Point light curve

No energy storage

≠
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Flare energy 
distribution

Aschwanden & 
Parnell (2002)

(Romano et al. 12)

(Hurford et al. 06)

• Brightenings / 
radiations are 
present observed 
over a very wide 
range of scales
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Flare energy distribution:

• Stellar flares 
detected by Kepler 
range with the 
same power law 
distributions than 
the solar flares
– Same physical 

mechanism may 
be activing in 
both cases.

• However, there is 
an important 
energy gap 
between observed 
stellar and solar 
flares

Maehara et al. 2017E.Pariat - 16 Mai 2018 – SunStars



Flare classification

• Flare classification: peak SXR 
radiation in the 0.1-0.8 nm band 
– Measure by the GOES satellites

– Not an energy classification
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Where and When?
• Active events develops (mostly) in the corona

– some repercussion on the chromosphere
• Active events occurs close to magnetic field 

concentration, e.g: active regions & filaments
–  cf. talk M. Kretzschmar

• Occurrence strongly follows the solar cycle
• Active events are strongly related to the 

global properties of the solar magnetic field
– Natural consequence of the dynamo
–  cf. talk S. Brun

(Shimojo & Tsuneta 09)

LoS magnetogramWL + EUV
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Solar eruptions

• Eruptions are impulsive & transient events that 
can present one or several of the following 
phenomena:

– Electromagnetic emission: the “flare” 

– Ejection/bulk flow of solar plasma: e.g. coronal mass 
ejection (CME)

– Energetic particle beams 

– Waves 
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Flare : definition

• Flare: transient and impulsive emission 
across the electromagnetic spectrum 
occurring at a time scale of minutes to hours.
– Multi-wavelength

• Most of the energy in white light 
 black body emission of 9000 K

– Low contrast in white light: difficult to observe
– Higher contrast at other wavelengths: used 

more frequently for flare research.
Kretzschmar, 2011

Fletcher, 2011
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Flare lightcurves: phases

• Impulsive: 
– Hard X rays (HXR), Microwave & White light 

emission
– Slow growth of EUV and Soft X rays (SXR)

• Gradual:
– EUV, SXR, chromospheric lines

Fletcher, 2011

Benz, 2002E.Pariat - 16 Mai 2018 – SunStars



Stellar flare lightcurves

Davenport, PhD Thesis 2015

• Stellar flares appears to present similar time 
profiles to solar flares

– Cf. Talk M. Deleuil

•  indication for similar physical mechanisms?

– Not observed in the same waveband

Scaled white-light light curves of 885 
stellar flares & their average

Kretzschmar, 2011E.Pariat - 16 Mai 2018 – SunStars



Flares : spatial dynamics
• Solar flares are not just a peak in light curves
• Flares emissions is highly structured with an important spatial 

dynamisc: 
– Flare ribbons (Visible, infrared, EUV)
– Bright kernels (White light, HXR)
– Post flare loops (EUV, SXR)

• Huge wealth of information that can be exploited to understand its 
physical mechanisms

(NASA / SVS RHESSI Krucker et al. 03)(Hinode/SOT)
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Coronal Mass Ejections (CMEs)

• CME: large bulb of plasma expelled away from the 
solar atmosphere

– Detected with solar coronograph

– Velocity:  300-3000 km.s-1 ; Mass: 1010-1012 kg

• Concomitant phenomena:

– Waves: “Moreton wave”, “EIT wave” 

– Shock fronts

– Coronal dimming : darkening around CME source 
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CMEs in interplanetary medium
• CMEs (ICMEs / magnetic clouds) are 

constituted by a magnetic structures: 
plasma is enclosed in a twisted 
magnetic flux ropes
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Outflows & waves

(Nishizuka et al. 09) (Shen et al.12)

• Jets: collimated 
brightenings which 
can be traced up to 
several solar rad

• Signatures of 
helical motions and 
wave patterns 
along with the jets.
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Energetic particles 
• Solar energetic particle (SEPs): Particle 

beams propagating in the heliosphere

• Ground level enhancement (GLE): Solar 
protons accelerated from 100 eV up to GeV

– relativistic energies 
– detected at Earth by Neutron Monitors

E= 4.15 GeV

Synchrotron emission: 
relativistic e-. 

Relativistic protons

X-rays and -rays: Impact Beams of non-thermal 
electrons : radio emission

Shock waves: 
radio emission E.Pariat - 16 Mai 2018 – SunStars



Solar eruptions: classification
• Eruptions are impulsive & transient events that can 

present one or several of the following phenomena:
– Electromagnetic emission: the FLARE 
– Ejection/bulk flow of solar plasma: e.g. coronal mass ejection
– Energetic particle beams 
– Waves 

• Nomenclature:
– Confined flare: flare without ejection
– Eruptive flare: flare with a CME
– Failed eruption: flare with an ejection that fails, that does not 

produce a CME  
– Jet: flare with collimated ejection, no CME/closed magnetic 

structure 
– Stealth coronal mass ejections: CME with flare emission 

barely detectable E.Pariat - 16 Mai 2018 – SunStars



Solar eruptions: classification

• Nomenclature:
– Confined flare: flare without ejection
– Eruptive flare: flare with a CME
– Failed eruption: flare with an ejection that fails, that 
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Actives regions magnetic field
• 2D maps of the photospheric B are routinely measured

–  cf. talk by A. Lopez Ariste on Magnetic field measurements 

– e.g. with HMI/SDO

• Full disk line of sight  magnetogram (B//) every 45 seconds

• Full disk full vector magnetograms (B) every 12 minutes

HMI/SDO
AR 11158 E.Pariat - 16 Mai 2018 – SunStars



3D coronal magnetic field
• As will be discussed hereafter, the knowledge of the full 3D distribution of the 

magnetic field in the coronal volume is fundamental to understand eruptivity
• From 2D magnetograms one can model the 3D coronal field 

– magnetic extrapolation methods
– Different possible assumptions (not discussed here)

• Potential field assumption: done routinely but of limited interest
• More complex assumptions: case by case studies, requires a real 

“savoir-faire”

(Dalmasse et al.18)
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Magnetohydrodynamics (MHD)
• The magneto-hydrodynamics approximation (Alfvén – Nobel 1970) is a physical 

paradigm of highly conductive fluids (e.g. plasmas and liquid metals), adapted 
to the large scale modeling of the solar atmosphere  . 

• Hypothesis:

– Fluid: generally simple fluid but possible extensions toward multi-fluids

– Quasi-neutral: ions and electrons are coupled

– Magnetized & conducting: retro-action between plasma & magnetic field 

• Limitations:

– Limited to large temporal (>1 s)  et spatial (>1 m) scales

– No effect related to individual particles can be 

• The MHD paradigm allows the self consistent study of solar eruptions

– Active regions: >1037  particles (L ~108 m ; n > 1013 m-3): kinetic treatment is 
simply impossible

– Initial and boundary conditions are observed and can be used in the 
models.
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MHD paradigm in the solar atmosphere
• Fully ionized (high T, low dens) 

 atmosphere made of plasma

• Fluid approximation valid for AR 
dynamics but some particle dynamics at 
small scales
– Mean free path: 103 -105m  < length 

scale of active region: 106m - 108m
– Collision time: 10-3 s to 1s < typical time 

scale of ARs: 1 min – 1 day

• Quasi-neutral
– Length scale >> Debye length (~ 1 cm)

• Non relativistic scales (v0 << c)
– Electric currents are induced by the 

magnetic field : Ampère Law

E.Pariat - 16 Mai 2018 – SunStars



Standard MHD Equations
• Mass conservation

• Impulsion conservation
– Plasma pressure
– Lorentz force
– + gravity, viscous stress, …

• Ampère law
– + relativistic term

• Induction equation & Ohm law
– + resistivity, Hall term, … 

• Closing equations: 
– State law (e.g. perfect gas)
– Energy conservation

+ …

+ …

+ …

+ …
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Lorentz force dominated medium

• Lorentz force: 10-6 N.m-3

– B~0.01 T, L~107

– Plasma pressure: 10-9 N.m-3

– P~10-2 Pa, L~107m

– Viscous stress & Advection: 10-10N.m-3

– V~105 m.s-1, L~107m, r~10-13 kg.m-3

• Gravity: 10-11 N.m-3

– g~280 m.s-2, r~10-13 kg.m-3
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Energy source
• Energy density in the solar corona:

– T~106 ; ne~109 cm-3 ; P~1 Dyne cm-2 ; V0~10 km s-1 ; =5/3 ; g~102 m2 s-1 ; L0~100 Mm 

– Kinetic energy: Ekin ~  103 erg m-3

– Gravitational potential energy: rgL0 ~  105 erg m-3 

– Internal energy: U=P/(-1)~nKBT , U          ~  106   erg m-3

– Magnetic energy: 
• ARs: B=500 G: Emag, AR ~ 1010 erg m-3

• Quiet Sun: B=5 G: Emag,QS ~ 106  erg m-3

• Energy in a (L0~100 Mm)3 region 
– Ekin ~ 1025 ergs ; U ~ 1030 ergs ; Emag,AR ~ 1034 ergs 

• Magnetic energy is the only possible source of main active events
– Typical total energy content of ARs: Emag,AR ~ 1032 - 1035 ergs 
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Ideal & non-ideal MHD

• For R=hj ; Magnetic Reynolds number:
– Rm >> 1: Ideal MHD

– Rm << 1: Resistive MHD 

• Solar Corona:

– V0~105 m s-1, h ~ 1 m2 s-1, L0~107 m

– Rm > 1012 : ideal MHD is a very good approximation of the solar 
corona, for large scale structure

• Exception to the rule: generation of solar eruption

– Non-ideal effect can be LOCALLY (scale < 11-3 m) important 

vs. active regions scale (> 107 m)

(R)
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“Frozen-in” flux in ideal MHD
• Ideal MHD induction equation:
• Magnetic flux conservation: the flux through 

any closed co-moving surface is conserved

• Frozen flux: plasma & magnetic field line are 
frozen  together: 

• Magnetic field lines are physical objects
• Connectivity conservation: two plasma 

elements lying initially on a field line will 
always do so

•  field line cannot change its topology / 
connectivity 
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Plasma b
• MHD Momentum equation:

• Plasma beta:

– b >> 1: thermodynamic dominates 
the plasma dynamics

– b << 1: magnetic field dominates  

• Corona: b << 1
– B dominated region: magnetic 

field fills the whole coronal 
volume and structure the domain.

• Sub-photosphere: b > 1
– Plasma dominated: lasma flows 

advect the magnetic flux tubes 
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Line-tied approximation

• Coronal field anchored in the lower 
atmosphere, high-beta region
– When an Alfvén waves reaches the 

photosphere
• Propagation speed   drop  by a factor 10

4

• Velocity amplitude drop by a factor 10
8

–  Quasi-complete reflexion back into
the corona

• Line-tying approximation: from the 
corona, the low atmosphere is 
considered as to an infinitively 
massive and conductive layer
– Dynamic of the corona do not affect 

the lower atmosphere
– Coronal field is driven, by motion at 

the Photosphere/Chromosphere

3D field extrapolation / reconstruction

Wiegelmann et al. 04

DeVore et al. 2005
E.Pariat - 16 Mai 2018 – SunStars
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Energy release mechanism

• The energy release mecanism(s) must:

– Develop in a magnetically dominated 
environement

– Extract the free magnetic energy

– Allow the acceleration of particles to very high 
energy

– Allow the ejection of plasma

– Allow some disconnection of the magnetic field

– Be impulsive, i.e. existence of a switch-on effect
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At the heart of solar eruptions: 
magnetic reconnection

• Solar eruptions 
are related to the 
brutal 
reconfiguration of 
its magnetic field

• Magnetic 
reconnection is 
the physical 
mechanism that 
enables this 
reconfiguration 
and is thus central 
to eruptions

Li et al. 2015
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Magnetic reconnection
• Magnetic reconnection is the 

mechanism that correspond to the 
local violation of the ideal MHD 
conditions

• Magnetic Reynolds number:
– Rm >> 1: Ideal MHD ; Rm << 1: 

Resistive MHD 

• Solar Corona: V0~1 km s-1, h~ 10-3 m2

s-1 :
– Rm ~1 for L0~1 m: recon. is a VERY 

localized process relatively to solar 
scales

• Magnetic reconnection locally 
diffuse the plasma and allows a 
change of connectivity of the field 
lines

E.Pariat - 16 Mai 2018 – SunStars



The do and do not of reconnection
• Magnetic reconnection does change the 

connectivity of the magnetic field

• Strictly speaking, reconnection does not:
– Dissipate magnetic energy: dissipation is 

due to reconnected field line slingshot 
and shocks.

– Heat the plasma: post reconnection 
compression and joule heating by the 
current sheets

– Accelerate particles: particle are likely 
accelerated by the electric currents of the 
current sheet

– Dissipate magnetic helicity

E.Pariat - 16 Mai 2018 – SunStars



The do and do not of reconnection
• Magnetic reconnection does 

– creates plasmoids which fragment the electric 
current sheets, 

–  induce strong non-linear effect that can 
enhance electric current intensity

• While magnetic reconnection has been mostly 
studied in 2D, its 3D dynamics offers a much wider 
range of dynamics: still an extremely lively domain 
of plasma physics

• Reconnection is a schizophrenic mechanism

– Magnetic reconnection is an MHD concept, 
and the condition of its trigger are organized at 
the large MHD scales.

– HOWEVER, its precise descriptions requires a 
full kinetic description, outside of the validity 
of the MHD paradigm. E.Pariat - 16 Mai 2018 – SunStars



Evidences of reconnection 
• No direct observation of reconnection but 

numerous consistent evidence

• Reconnection is fully consistent with
– Energetic events (1020-1025J).
– Violent energy release (cf. trigger mechanism)
– Non-thermal particles can be accelerated at the 

current sheets involved in reconnection
• Though details of the mechanism poorly understood

• Change of the coronal loops connectivity 
during active events

• Observed structures consistent with 
reconnection scenarios
– Cusp shaped loops
– Supra-arcades downflows
– CME current sheet

• Reconnection models (analytical and 
numerical) can reproduce a large variety of  
active phenomena
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The standard model

Waves

Lin & Forbes (2000)
Masson et al. (2012)

Escaped particles
10 m

Janvier et al. (2014)
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The standard model

Waves

Lin & Forbes (2000)
Masson et al. (2012)

Escaped particles
10 m

Janvier et al. (2014)
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Flux emergence
• The solar atmosphere is a magnetically dominated environment

 no dynamo effect & no field intensification 
•  coronal magnetic field and magnetic energy are generated and transported 

from the solar interior thanks to “magnetic flux emergence” processes. 

Courtesy
NASA SVS
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Emergence and eruptivity
• Before and during a solar flare there is no brutal variations at the 

solar surface: flux emergence is a relatively smooth process 
relatively to eruptivity.

• As with volcanism, there is no easily-observed known precursor 
sign to solar eruptions.

(Liu & Schuk 12)

Surface solaire (lumière visible) Champ magnétique 
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Energy build-up
• Smooth changes of the magnetic 

flux and of the magnetic energy 
prior to a flare

•  Energy release trigger is not 
primarily correlated with the 
driving mechanism of the 
energy injection. 

• During active events the 
photospheric field distribution is 
almost unchanged

Major 
Flares

White light (SDO/HMI) Blos magnetogram
E.Pariat - 16 Mai 2018 – SunStars



Potential & Non-Potential
• Not all magnetic energy are equals!

• For a given distribution of a magnetic field on the boundary of a 
domain, there is an unique decomposition of the magnetic field in 
potential and non-potential field.

• Potential field:                        with

– the potential field has the same normal distribution than the 
studied field on the whole boundary

• Non-potential field:

– The non potential field “carry” all the 
electric currents of the

studied field.

• Thomson theorem:

– Total magnetic energy is the sum of the mag. energy of the 
potential field and the “free” magnetic energy (mag. energy of 
the non-potential field)

B

Bp

Bj

+

=

E.Pariat - 16 Mai 2018 – SunStars



Free magnetic energy

• Observationally based fact: during an 
eruption, B distribution barely changes 
 Bp and Epot do not change 

 the energy source of an eruption is 
the free magnetic energy

• To erupt, to flare, the magnetic system 
prior to an active events must be 

– non-potential 

– have free magnetic energy

– must carry electric currents.

• Free magnetic is a necessary condition 
for eruptivity but it is not a sufficient 
condition.

– Magnetic structures with large free 
energy are more likely to flare. 

– Free energy does not inform on 
when that region will flare

Non PotentialPotential
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Forms of 
non-potentiality

Non-potential fields 
= volume electric-current carrying fields 
= sheared or twisted magnetic field 
= important magnetic helicity content 

Rotation of an AR

James et al. 18

Guo et al. 17
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Where can 
reconnection 
takes place?

• Eruptions are 
untypical events. 

• They do not 
occurs 
everywhere

• They do not 
occur all the time

•  reconnection 
only occurs in 
specific places 
and conditions!

E.Pariat - 16 Mai 2018 – SunStars



Magnetic reconnection

• Reconnection occurs where/when the resistive term is high:
– Possibly depends on local plasma condition: h can increases with 

temperature, depending on type of collisions, …. 
– Depends on the geometry of the magnetic field: the field must present 

strong  rotational of the electric current density, i.e localized thin current 
sheet

• Magnetic reconnection is a challenging process to understand because 
it couples strongly local and global scales 

(Aulanier 04)
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How are current sheet formed ?
• 3D coronal field is formed by several connectivity domains 

• F.l.s of a same connectivity domain can be 
continuously deformed from one to another

• Separatrix surface: 
• boundary between 2 connectivity domains 
• surface of discontinuity of the connectivity
• Separatrice: particular field line of a separatrix

• Quasi-spontaneous current sheet formation along 
separatrix surface

– Displacement around the separatrix 
–  Jump in By

–  Non null localized  current density

(Longcope et Malanushenkoa 09)

z

x

y

x

y
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Volume currents & current sheets

• In MHD, electric currents are 
induced by the field

– Lorentz Force 

• Force free volume currents

– Field aligned

– Important for free energy 
accumulation

– Stable structure in general

• Non-force free current sheets. 
– Non field aligned
– Lorentz force present
– Important for reconnection
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The standard model

Waves

Lin & Forbes (2000)
Masson et al. (2012)

Escaped particles
10 m

Janvier et al. (2014)
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Reminder: flare phases

• Impulsive: 
– Hard X rays (HXR), Microwave & White light 

emission
– Slow growth of EUV and Soft X rays (SXR)

• Gradual:
– EUV, SXR, chromospheric lines

Fletcher, 2011

Benz, 2002E.Pariat - 16 Mai 2018 – SunStars



Flare Emission : Impulsive Phase
• The thick target model: Injection from a (coronal) 

accelerator into a (chromospheric) passive target
• Accelerated e- beam flowing along field lines 

gyrosynchrotron emission observed in microwave
• e- beams interacting with dense plasma: Bremstrahlung

– Hard X ray foot point emission
– Coronal emission (If corona dense enough: )

• Accelerated ions interacting with dense plasma: y rays
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Ribbons & HXR 
footpoints

Ribbons & HXR link with magnetic field
• Standard model: accelerated 

particles/energy flowing from 
the reconnection site

• interacts with lower denser 
layers  formation of  
Ribbons and HXR footpoint

• Reconnection occurs where 
current sheets are located

• Separatrices defines
preferential sites for current 
build-up hence reconnection

•  Ribbons are located at the 
footpoint of separatrices
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Ribbons and topological structures
• Topological analysis allows to deduce the 

positions & shapes of the ribbons

• Long record of excellent match between ribbons 
& topological structures (e.g. Gorbachev 88, 
Gorbachev & Somov 89,  Mandrini et al. 91,14, 
Démoulin et al. 93, 94, Van Driel-Gesztelyi et al. 
94, …, Savcheva et al 12a-b, 14, Inoue et al. 13, 
Dudik et al. 14, Liu et al. 14, Zhao et al. 14, , 
Masson et al. 09,16)(Masson et al. 16)

AIA 1600 2011/10/22 15h21

(Savcheva et al. 15a)

• Particular

topological

structures 

correspond to  

specific ribbons 

shape:

• Double J-shaped 

ribbons  Flux rope

• Circular ribbons 

3D null points

Topological 

structures (QSLs)

Topological structures (QSLs)
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Ribbons, 
topology & 

electric currents 

• Recent improvement in magnetic 
field measurements enable the 
determination of the normal 
component of photospheric electric 
currents (Jz)

• As predicted, electric current sheets 
are found to be co-spatial with
– EUV ribbons
– Reconnection topological 

structures

•  Further confirmation of the 
standard model for eruptions

(Janvier et al. 16)
E.Pariat - 16 Mai 2018 – SunStars



Flare Emission : gradual Phase
• Heating of the plasma from accelerated particles & 

thermal conduction from corona: 
•  Thermal emission in EUV and Soft X-ray

– Neupert effect:  time integrated HXR flux % SXR flux

• Chromospheric evaporation: chromospheric pressure 
increases  upflows from chromospheric to corona

– Denser coronal loops  radiation in EUV

• Ribbon separation
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Ribbons evolution
• Thanks to simulations initiated with observed 

magnetic field data it is possible to predict the 
evolution of the EUV emission!

• Predicted ribbons matches very well the shape 
and dynamic of the observed ones
– Comparison of uncorrelated datasets

• Pré-eruption magnetic field measurements
• Post eruption EUV emission

(Savcheva

et al. 15b)

SDO/171

Evolution of

Topological

Structures

(QSLs)

Evolution 

of flare

Ribbons
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The standard model

Waves

Lin & Forbes (2000)
Masson et al. (2012)

Escaped particles
10 m

Janvier et al. (2014)

• The capacity to « predict » the 
localisation, shapes & dynamics of the 
flares is an important confirmation of 
the standard model and the central 
role of magnetic reconnection
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Plan

• Principes de base:
– Définition et propriétés des éruptions solaires
– Champ magnétiques des centres éruptifs et leur modélisation
– Reconnexion magnétique MHD et au-delà

• Résultats principaux: le modèle standard 3D des éruptions
– Formation des régions actives, structuration des centres éruptifs
– Production des émissions électromagnétiques
– Dynamique magnétiques des systèmes éruptifs

• Perspectives/Questions:
– l'énigme du déclenchement des éruptions
– la prédiction des éruptions solaires
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Dynamics of erupting system 

• Numerical simulations allows an excellent understanding of the 
dynamics of eruptive magnetic structures, from the Sun to the 
Earth, with good capabilities to reproduce specific events 
thanks to data-tuned, data-initiated or data-driven models E.Pariat - 16 Mai 2018 – SunStars



Plan

• Principes de base:
– Définition et propriétés des éruptions solaires
– Champ magnétiques des centres éruptifs et leur modélisation
– Reconnexion magnétique MHD et au-delà

• Résultats principaux: le modèle standard 3D des éruptions
– Formation des régions actives, structuration des centres éruptifs
– Production des émissions électromagnétiques
– Dynamique magnétiques des systèmes éruptifs
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– la prédiction des éruptions solaires
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Opens questions

• While the 3D standard model allows a vast 
understanding of the eruptions phenomena 
two key issues remains:

– How are particles accelerated during eruptions

• Related to the properties of the physical mechanisms 
developing around the reconnection site.

• not treated here

– How are eruptions triggered? What makes the 
magnetic system suddenly unstable? Why are 
eruptions “eruptive”?
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A jungle of models
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Active event trigger
• Motions, flux 

emergence lead to the 
spontaneous formation 
of currents sheets at 
separatrices
– “Slow” reconnection 

continuously dissipate 
the formed currents

• Impulsiveness of flares 
must involve a trigger 
mechanism:
– allows to enhance the 

reconnection rate and 
the efficiency of the 
reconnection process 

– Trigger can be an 
instability or a 
catastrophic evolution

– Mechanisms may be 
non exclusive

Trigger ?

Trigger ?

Trigger ?
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High reconnection rate trigger

• Driven reconnection: 
catastrophic enhancement 
of the reconnection rate
– current sheet thinning, 

extension, and/or 
intensification

– Large scale driver: e.g. flows,  
flux emergence, magnetic 
forcing (CME)

• But not a trigger/instability 
scenario
– Does not explain why the 

system is unstable
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Spontaneous reconnection

• Modification of the property 
of the current sheet, e.g. 
fractal structure
– Local instability: e.g

tearing
– Catastrophic formation 

plasmoids
• Modification of the 

reconnection regime
– Modification of local 

plasma property 
Locally enhanced resitivity

(Samtaney et al. 2009)

Cassak et al. 06• These trigger scenario are:
– Local (<10 m scale)
– Related to the physics of reconnection, 
– Not in the MHD paradigm, but rather 

requires full particle plasma physicsE.Pariat - 16 Mai 2018 – SunStars



ideal MHD instability:  torus instability

• Magnetic structure of CMEs progenitors has:

• A current carrying structure: flux rope or 
sheared arcade: a structure with volume 
electric currents

• An external confining magnetic field 

• Two opposite directed magnetic forces are 
acting on the current carrying structure 
(gravity neglected) 

• Repulsive: magnetic pressure,sB2/2m, due 
to the confined expansion of the sheared B 
fields on their photospheric side

• Constraining: Magnetic Tension, (B.s)B/m, 
due to the curvature of the coronal B field
lines

Aulanier et al. (2010)

+

–
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An ideal MHD instability scenario:  
torus instability

• Two opposite directed forces

• Repulsive: magnetic
pressure, of the current
carrying structure

– Constraining: magnetic
Tension, (B.s)B/m, of the 
external field

• The system remains stable as 
long as the confining field is 
« sufficiently » strong.

– Theory working well (analytical 
criteria) for electric current wires

• Not generalized for 3D magnetic 
configuration in MHD

– However parametric 
simulations give consistent 
results

… stables … éruptifs

Zuccarello et al. 2015
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Active event trigger
• Motions, flux 

emergence lead to the 
spontaneous formation 
of currents sheets at 
separatrices
– “Slow” reconnection 

continuously dissipate 
the formed currents

• Two main scenarios for 
eruption trigger
– Involving different 

physical paradigm
• MHD 
• Full particle

– Developing at 
different spatial scales

• Ideal MHD: > 106 m
• Non MHD: < 10 m

Torus instability
Ideal MHD; large scale

Reconnection/current
sheet instability

Non MHD; small scale
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The trigger issue
• The two main trigger scenario 

candidates are developing on 

different physical paradigm at vastly 

different scales

– Large scale 107-109 m: active regions, 

magnetic structuration & energy storage

– Small scale, 0.1-10 m:  reconnection

• Today one cannot directly compare, 

model & simulate these scenarios 

altogether.

– Observations: highest resolution: ~50 km 

– Laboratory experiment: physical condition 

too different, scaling limited

– Numerical simulations

• Necessary power:~1030-38 units to 

simulate simultaneously

• Actual capacity:~1012 treated units

•  No direct determination of the 

relative role of this process is 

possible (and for some time)!

1 m

108 mE.Pariat - 16 Mai 2018 – SunStars



• Development 
of a new 
applied 
discipline: 
space weather

• Alert capacity 
is limited to the 
impact of 
CMEs

• No capacity for 
advance (<a 
few minutes) 
prediction of 
flares and 
energetic 
particles

Solar activity surveillance
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• Predictions are based on 
empirical model
– Comparison with past 

activity

– Only working with large 
time window (> 24h)

• Probability of detection 
of an X-class flare: ~40%

• No quantitative 
estimation of eruptivity

• Mainly surveillance

Eruption predictions

(Falconer et al. 11)
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FLARECAST
• FLARECAST: new generation automatic 

prediction system: prediction in the big 
data era.

• Automatic extraction of active regions 
properties: > 170 quantities measured at 
each instant for each active center

• Use of ~20 data mining and artificial 
intelligence algorithm 
– Supervised machine learning, 

Unsupervised learning techniques, 
regression, hybrid methods, multi-tasks

• But… only a marginal improvement in 
detection probability
– Most of the criteria are based on 2D 

magnetograms, hence on the energization 
process (necessary condition) and not on 
the trigger mechanism (sufficient 
condition) 

E.Pariat - 16 Mai 2018 – SunStars



Conclusions
• While understanding of solar eruptions has hugely progress, key 

questions remains regarding
– the trigger process
– the energy budget & particle acceleration induced by magnetic 

reconnection

• Needs for understanding solar eruptions 
– go beyond the simple quest for knowledge 
– becomes more and more highly driven by the need for quantitative 

prediction of the impact of solar activity on human assets.

•  challenging push for a new generation of tools, instrumental and 
numerical, that will support the applied bourgeoning discipline of space 
weather. This tools shall be
– Sufficiently fast
– Precise and quantitative
– Standardized and reliable
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